主营:欧姆龙,三菱,安川,Pro-face
驱动器:MR-H_ACN系列内置定位功能。
额定输出:1.0KW。
在伺服驱动器速度闭环中,
电机转子实时速度测量精度对于改善速度环的转速控制动静态特性至关重要。
为寻求测量精度与系统成本的平衡,一般采用增量式光电编码器作为测速传感器,
与其对应的常用测速方法为M/T测速法。
M/T测速法虽然具有一定的测量精度和较宽的测量范围,
但这种方法有其固有的缺陷,
主要包括:测速周期内必须检测到至少一个完整的码盘脉冲,限制了低可测转速。
用于测速的2个控制系统定时器开关难以严格保持同步,
在速度变化较大的测量场合中无法保证测速精度。
因此应用该测速法的传统速度环设计方案难以提高伺服驱动器速度跟随与控制性能。
三菱电机通用交流伺服放大器MELSERVO-J3系列。
额定输出:11.0kw。
接口类型:SSCNETⅢ光纤通讯型。
特殊规格:适用于直线伺服电机型。
电源规格:三相AC400V伺服放大器。
更为先进的实时自动调谐通过设定响应值,
包括位置增益和速度增益在内的所有增益都可自动调整。
可设定32段响应级别。
振动控制。
通过自动调谐功能自动设定一个佳的振动控制滤波器值来有效当驱动部件停止时所发生的100Hz频率以下的振动。
自动调谐功能也可有效机械臂末端所发生的振动和减小机械中残余的振动。功率:75kw。
电压:200V。
正弦波滤波器使用。
可将电机的电压、电流大致调整为正弦波。
将正弦波滤波器安装至变频器输出端伺服放大器。
适用于FR-A820-03800(75K)以上和FR-A840-02160(75K)及以上变频器。
正弦波滤波器的操作特性等效于正弦波电源驱动,能提供下列好处。
低噪声。
无浪涌电流。
减少电机损耗(标准电机)。功率:75kw。
电压:200V。
正弦波滤波器使用。
可将电机的电压、电流大致调整为正弦波。
将正弦波滤波器安装至变频器输出端。
适用于FR-A820-03800(75K)以上和FR-A840-02160(75K)及以上变频器。
正弦波滤波器的操作特性等效于正弦波电源驱动,能提供下列好处。
低噪声。
无浪涌电流。
减少电机损耗(标准电机)。无线的长度:0.3m。
该电用途:MR-BT6VCASE用伺服放大器。三菱电机通用交流伺服放大器MELSERVO-J3W系列(两轴一体型伺服放大器)。
额定输出A轴:400w。
额定输出B轴:400w。
接口类型:SSCNETⅢ光纤通讯型。
拥有MR-J3-B伺服放大器相同的,多功能性和实用性,
每个MR-J3W-B伺服放大器可进行旋转伺服电机,
直线伺服电机和直驱伺服电机中任意两种的组合控制。
与两个MR-J3-B伺服放大器相比,安装面积可减少17%~25%。
因此,可构建结构更加紧凑的控制系统。
此外,两个轴使用相同的主回路电源,控制回路电源和SSCNETⅢ通讯光纤,因此极大地减少配线。三菱通用型AC伺服放大器MELSERVO-J2-Super系列。
额定输出:22.0kw。
SSCNET接口。
电压: 3相AC200VAC或者单相AC230V。
采用SSCNET高速串行通讯的完全同步系统,
控制器和伺服放大哭器之间的通讯循环时间长为0.888ms。
这样的系统将能提供高可靠性和。
用SSCNET连接伺服系统时,
如motion系统中伺服放大器参数设置以及数据的采集特性将会在运动控制器上显示。
将一根专用电缆连接放大器和控制器,构成SSCNETT系统三菱MR-H100ACN。
这种简单的连接方法减少了布线时间而且有助有防噪声。
即使在MELSSERVO-J2-SUPER系列产品上使用高分辨率编码标准时,命令频率也没有限制三菱MR-H100ACN。
只需在伺服放大器上加装一个电池,就可以构成对值系统。
目前有过1000000个高可靠性SSCNET伺服放大器网络在使用。
¥0.00
产品简介:
伺服放大器 MR-H15KTN
驱动器:MR-H_ACN系列CC-LINK功能。
额定输出:15KW。
这种测试系统由两部分组成,分别是被测伺服驱动器—电动机系统和上位机。
上位机将速度指令信号发送给伺服驱动器,
伺服驱动器按照指令开始运行。
在运行过程中,上位机和数据采集电路采集伺服系统的运行数据,
并对数据进行保存、分析与显示。由于这种测试系统中电机不带负载,
所以与前面两种测试系统相比,该系统体积相对减小,
而且系统的测量和控制电路也比较简单,
但是这也使得该系统不能模拟伺服驱动器的实际运行情况。
通常情况下,此类测试系
产品简介:
伺服放大器 MR-H100BN
驱动器:MR-H_ACN系列SSC-NET兼容交流伺服。
额定输出:1.0KW。
伺服控制器通过自动化接口可很方便地进行操作模块和现场总线模块的转换,
同时使用不同的现场总线模块实现不同的控制模式(RS232、RS485、光纤、InterBus、ProfiBus),
而通用变频器的控制方式比较单一。
伺服控制器直接连接旋转变压器或编码器,构成速度、位移控制闭环。
而通用变频器只能组成开环控制系统。
伺服控制器的各项控制指标(如稳态精度和动态性能等)优于通用变频器。
产品简介:
伺服放大器 MR-H100AN
驱动器:MR-H_AN系列。
额定输出:1.0KW。
通用交流伺服型。
伺服驱动器(servo drives)又称为“伺服控制器”、“伺服放大器”,
是用来控制伺服电机的一种控制器,其作用类似于变频器作用于普通交流马达,
属于伺服系统的一部分,主要应用于的定位系统。
一般是通过位置、速度和力矩三种方式对伺服马达进行控制,
实现的传动系统定位,目前是传动技术的产品。
伺服驱动器是现代运动控制的重要组成部分,
被广泛应用于工业机器人及数控加工中心等自动化设备中。
尤其是应用于控制交流永磁同步电机的伺
产品简介:
伺服放大器 MR-H100TN
驱动器:MR-H_ACN系列CC-LINK功能。
额定输出:1.0KW。
这种测试系统由两部分组成,分别是被测伺服驱动器—电动机系统和上位机。
上位机将速度指令信号发送给伺服驱动器,
伺服驱动器按照指令开始运行。
在运行过程中,上位机和数据采集电路采集伺服系统的运行数据,
并对数据进行保存、分析与显示。由于这种测试系统中电机不带负载,
所以与前面两种测试系统相比,该系统体积相对减小,
而且系统的测量和控制电路也比较简单,
但是这也使得该系统不能模拟伺服驱动器的实际运行情况。
通常情况下,此类测试
产品简介:
伺服放大器 MR-H10BN
驱动器:MR-H_ACN系列SSC-NET兼容交流伺服。
额定输出:0.1KW。
伺服控制器通过自动化接口可很方便地进行操作模块和现场总线模块的转换,
同时使用不同的现场总线模块实现不同的控制模式(RS232、RS485、光纤、InterBus、ProfiBus),
而通用变频器的控制方式比较单一。
伺服控制器直接连接旋转变压器或编码器,构成速度、位移控制闭环。
而通用变频器只能组成开环控制系统。
伺服控制器的各项控制指标(如稳态精度和动态性能等)优于通用变频器。
产品简介:
伺服放大器 MR-H10AN
驱动器:MR-H_AN系列。
额定输出:0.1KW。
通用交流伺服型。
伺服驱动器(servo drives)又称为“伺服控制器”、“伺服放大器”,
是用来控制伺服电机的一种控制器,其作用类似于变频器作用于普通交流马达,
属于伺服系统的一部分,主要应用于的定位系统。
一般是通过位置、速度和力矩三种方式对伺服马达进行控制,
实现的传动系统定位,目前是传动技术的产品。
伺服驱动器是现代运动控制的重要组成部分,
被广泛应用于工业机器人及数控加工中心等自动化设备中。
尤其是应用于控制交流永磁同步电机的伺
产品简介:
伺服放大器 MR-H15KAN
驱动器:MR-H_AN系列。
额定输出:15KW。
通用交流伺服型。
伺服驱动器(servo drives)又称为“伺服控制器”、“伺服放大器”,
是用来控制伺服电机的一种控制器,其作用类似于变频器作用于普通交流马达,
属于伺服系统的一部分,主要应用于的定位系统。
一般是通过位置、速度和力矩三种方式对伺服马达进行控制,
实现的传动系统定位,目前是传动技术的产品。
伺服驱动器是现代运动控制的重要组成部分,
被广泛应用于工业机器人及数控加工中心等自动化设备中。
尤其是应用于控制交流永磁同步电机的伺服
产品简介:
伺服放大器 MR-H11KTN
驱动器:MR-H_ACN系列CC-LINK功能。
额定输出:11KW。
这种测试系统由两部分组成,分别是被测伺服驱动器—电动机系统和上位机。
上位机将速度指令信号发送给伺服驱动器,
伺服驱动器按照指令开始运行。
在运行过程中,上位机和数据采集电路采集伺服系统的运行数据,
并对数据进行保存、分析与显示。由于这种测试系统中电机不带负载,
所以与前面两种测试系统相比,该系统体积相对减小,
而且系统的测量和控制电路也比较简单,
但是这也使得该系统不能模拟伺服驱动器的实际运行情况。
通常情况下,此类测试系
产品简介:
伺服放大器 MR-H11KACN
驱动器:MR-H_ACN系列内置定位功能。
额定输出:11KW。
在伺服驱动器速度闭环中,
电机转子实时速度测量精度对于改善速度环的转速控制动静态特性至关重要。
为寻求测量精度与系统成本的平衡,一般采用增量式光电编码器作为测速传感器,
与其对应的常用测速方法为M/T测速法。
M/T测速法虽然具有一定的测量精度和较宽的测量范围,
但这种方法有其固有的缺陷,
主要包括:测速周期内必须检测到至少一个完整的码盘脉冲,限制了低可测转速。
用于测速的2个控制系统定时器开关难以严格保持同步,
在速度变化较大的
产品简介:
伺服放大器 MR-H15KBN
驱动器:MR-H_ACN系列SSC-NET兼容交流伺服。
额定输出:15KW。
伺服控制器通过自动化接口可很方便地进行操作模块和现场总线模块的转换,
同时使用不同的现场总线模块实现不同的控制模式(RS232、RS485、光纤、InterBus、ProfiBus),
而通用变频器的控制方式比较单一。
伺服控制器直接连接旋转变压器或编码器,构成速度、位移控制闭环。
而通用变频器只能组成开环控制系统。
伺服控制器的各项控制指标(如稳态精度和动态性能等)优于通用变频器。
产品简介:
伺服放大器 MR-H11KAN
驱动器:MR-H_AN系列。
额定输出:11KW。
通用交流伺服型。
伺服驱动器(servo drives)又称为“伺服控制器”、“伺服放大器”,
是用来控制伺服电机的一种控制器,其作用类似于变频器作用于普通交流马达,
属于伺服系统的一部分,主要应用于的定位系统。
一般是通过位置、速度和力矩三种方式对伺服马达进行控制,
实现的传动系统定位,目前是传动技术的产品。
伺服驱动器是现代运动控制的重要组成部分,
被广泛应用于工业机器人及数控加工中心等自动化设备中。
尤其是应用于控制交流永磁同步电机的伺服
产品简介:
伺服放大器 MR-H10ACN
驱动器:MR-H_ACN系列内置定位功能。
额定输出:0.1KW。
在伺服驱动器速度闭环中,
电机转子实时速度测量精度对于改善速度环的转速控制动静态特性至关重要。
为寻求测量精度与系统成本的平衡,一般采用增量式光电编码器作为测速传感器,
与其对应的常用测速方法为M/T测速法。
M/T测速法虽然具有一定的测量精度和较宽的测量范围,
但这种方法有其固有的缺陷,
主要包括:测速周期内必须检测到至少一个完整的码盘脉冲,限制了低可测转速。
用于测速的2个控制系统定时器开关难以严格保持同步,
在速度变化较大
产品简介:
伺服放大器 MR-H10TN
驱动器:MR-H_ACN系列CC-LINK功能。
额定输出:0.1KW。
这种测试系统由两部分组成,分别是被测伺服驱动器—电动机系统和上位机。
上位机将速度指令信号发送给伺服驱动器,
伺服驱动器按照指令开始运行。
在运行过程中,上位机和数据采集电路采集伺服系统的运行数据,
并对数据进行保存、分析与显示。由于这种测试系统中电机不带负载,
所以与前面两种测试系统相比,该系统体积相对减小,
而且系统的测量和控制电路也比较简单,
但是这也使得该系统不能模拟伺服驱动器的实际运行情况。
通常情况下,此类测试
产品简介:
伺服放大器 MR-H15KACN
驱动器:MR-H_ACN系列内置定位功能。
额定输出:15KW。
在伺服驱动器速度闭环中,
电机转子实时速度测量精度对于改善速度环的转速控制动静态特性至关重要。
为寻求测量精度与系统成本的平衡,一般采用增量式光电编码器作为测速传感器,
与其对应的常用测速方法为M/T测速法。
M/T测速法虽然具有一定的测量精度和较宽的测量范围,
但这种方法有其固有的缺陷,
主要包括:测速周期内必须检测到至少一个完整的码盘脉冲,限制了低可测转速。
用于测速的2个控制系统定时器开关难以严格保持同步,
在速度变化较大的
专注服务于工控领域 7×8小时售后支持
全方位的技术支持 因为专注所以专业